8-910-193-2135 «Ваша Стоматология»
м/р-н Черноречье, 1
(4942) 42-75-21

Как определить растяжение пружины формула

При колебаниях пружины восстанавливающая сила обусловлена ее упругостью. В определенных пределах, согласно закону Гука, вызванная деформацией сила пропорциональна величине деформации.

Поэтому упругие колебания являются гармоническими. В случае пружин величина жесткости обычно обозначается через k и именуется коэффициентом упругости пружины.

k коэффициент упругости пружины, Ньютон / метр
F сила, вызывающая деформацию Δl, Ньютон
Δl удлинение, прогиб или другое изменение формы, метр
ω угловая частота, радиан / секунда
f линейная частота, Герц
T период, длительность полного колебания, секунда
m масса колебательной системы, обычно тела, укрепленного на пружине, кг

И в соответствии с (9)

Масса самой пружины в (3, 4, 5) не учитывается. При точных расчетах массу m следует увеличить приблизительно на mпр/ 3 ( mпр — масса пружины).

Величины ω, f и T не зависят от амплитуды.

Для определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

Изготовление пружин любого типа вы можете заказать здесь.

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G — модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной — 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

  • Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия — L1;
  • Измеряется длина пружины с подвешенным грузом — L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) — величина F;
  • Вычисляется разница между последним и первым показателем длины — L;
  • Рассчитывается коэффициент упругости по формуле: k = F/L.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

Формулы и способы расчета пружин из стали круглого сечения по ГОСТ 13765

Пружина сжатия Пружина растяжения

Наименование параметра Обозначение Расчетные формулы и значения
Сила пружины при предварительной деформации, Н F 1 Принимается в зависимости от нагрузки пружины
Сила пружины при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме), Н F 3 Принимается в зависимости от нагрузки пружины
Рабочий ход пружины, мм h Принимается в зависимости от нагрузки пружины
Наибольшая скорость перемещения подвижного конца пружины при нагружении или разгрузке, м/с v max Принимается в зависимости от нагрузки пружины
Выносливость пружины, число циклов до разрушения N F Принимается в зависимости от нагрузки пружины
Наружный диаметр пружины, мм D 1 Предварительно принимаются с учетом конструкции узла. Уточняются по таблицам ГОСТ 13766…ГОСТ 13776
Относительный инерционный зазор пружины сжатия. Для пружин растяжения служит ограничением максимальной деформации δ δ = 1 — F 2 / F 3 (1)

Для пружин сжатия классов I и II

δ = 0,05 — 0,25

для пружин растяжения

δ = 0,05 — 0,10

для одножильных пружин класса III

δ = 0,10 — 0,40

для трехжильных класса III

δ = 0,15 — 0,40

Сила пружины при максимальной деформации, Н F 3

Уточняется по таблицам ГОСТ 13766 ÷ ГОСТ 13776

Для трехжильных пружин

Для пружин с предварительным напряжением

Для трехжильных пружин

где n2 — число опорных витков

Для трехжильных пружин

Для трехжильных пружин

Рекомендуется назначать от 4 до 12

Сила предварительного напряжения (при навивке из холоднотянутой и термообработанной проволоки), Н F (0,1 ÷ 0,25) F 3
Диаметр проволоки, мм d Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Диаметр трехжильного троса, мм d 1 Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Жесткость одного витка пружины, Н/мм c 1 Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Максимальная деформация одного витка пружины, мм s’ (при F = 0)

s» (при F > 0)

Выбирается по таблицам ГОСТ 13764 ÷ ГОСТ 13776
Максимальное касательное напряжение пружины, МПа τ 3

Для трехжильных пружин

Критическая скорость пружины сжатия, м/с v k
Модуль сдвига, МПа G Для пружинной стали

G = 7,85 х 10 4

Динамическая (гравитационная) плотность материала, Н • с 2 /м 4 ρ ρ = γ / g,

где g — ускорение свободного падения, м/с 2

γ — удельный вес, Н/м 3

Для пружинной стали ρ = 8•10 3

Жесткость пружины, Н/мм с
Число рабочих витков пружины n
Полное число витков пружины n 1
Средний диаметр пружины, мм D
Индекс пружины i
Коэффициент расплющивания троса в трехжильной пружине, учитывающий увеличение сечения витка вдоль оси пружины после навивки Δ Для трехжильного троса с углом свивки β = 24° определяется по таблице
i 4,0 4,5 5,0 5,5 6,0 7,0 и

более

Δ 1,029 1,021 1,015 1,010 1,005 1,000

где n3 — число обработанных витков

Для трехжильных пружин

Для пружин растяжения с зацепами

Для пружин растяжения

Для пружин растяжения

Для трехжильных пружин

Для пружин растяжения

Для трехжильных пружин

Для пружин растяжения с предварительным напряжением

Методика определения размеров пружин

Исходными величинами для определения размеров пружин являются силы F 1 и F 2, рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке v max, выносливость N F и наружный диаметр пружины D 1 (предварительный).

Если задана только одна сила F2 , то вместо рабочего хода h для подсчета берут величину рабочей деформации s 2, соответствующую заданной силе

По величине заданной выносливости NF предварительно определяют принадлежность пружины к соответствующему классу

По заданной силе F 2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F 3

По значению F 3, пользуясь таблицей, предварительно определяют разряд пружины

По таблицам «Параметры пружин» находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D 1. В этой же строке находят соответствующие значения силы F 3 и диаметра проволоки d

Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ 3 находят по таблице, для пружин из холоднотянутой и термообработанной проволоки τ 3 вычисляют с учетом значений временного сопротивления Rm . Для холоднотянутой проволоки Rm определяют из ГОСТ 9389, для термообработанной — из ГОСТ 1071

По полученным значениям F 3 и τ 3, а также по заданному значению F 2 по формулам (5) и (5а) вычисляют критическую скорость vK и отношение vmax / vK , подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу.

При несоблюдении условий vmax / vK < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия. Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин

По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3 , после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25)

Предварительная деформация пружины, мм s 1
Рабочая деформация пружины, мм s 2
Максимальная деформация пружины, мм s 3
Длина пружины при максимальной деформации, мм l 3
Длина пружины в свободном состоянии, мм l
Длина пружины растяжения без зацепов в свободном состоянии, мм l’
Длина пружины при предварительной деформации, мм l 1
Длина пружины при рабочей деформации, мм l 2
Шаг пружины в свободном состоянии, мм t
Напряжение в пружине при предварительной деформации, МПа τ 1
Напряжение в пружине при рабочей деформации, МПа τ 2
Коэффициент, учитывающий кривизну витка пружины k
Длина развернутой пружины (для пружин растяжения без зацепов), мм l
Масса пружины (для пружин растяжения без зацепов), кг m
Объем, занимаемый пружиной (без учета зацепов пружины), мм 3 V
Зазор между концом опорного витка и соседним рабочим витком пружины сжатия, мм λ Устанавливается в зависимости от формы опорного витка
Внутренний диаметр пружины, мм D 2
Временное сопротивление проволоки при растяжении, МПа R m Устанавливается при испытаниях проволоки или по ГОСТ 9389 и ГОСТ 1071
Максимальная энергия, накапливаемая пружиной, или работа деформации, мДж Для пружин сжатия и растяжения без предварительного напряжения

Расчет пружины растяжения

Опубликовано 28 Июн 2015

Рубрика: Механика | 25 комментариев

Данная статья является откликом на многочисленные обращения читателей с просьбой представить алгоритм и расчет пружины растяжения в виде простой и понятной программы в MS Excel, подобной программе расчета пружины сжатия, опубликованной на блоге в июне 2013 года.

Перед тем как перейти непосредственно к программе хочу отметить несколько важных моментов, определяющих методику расчета цилиндрической винтовой пружины растяжения из круглой проволоки.

1. Логика и зависимости силового расчета пружины растяжения абсолютно аналогичны алгоритму и формулам расчета пружины сжатия.

2. На величину высоты пружины существенно влияют форма и размеры зацепов.

В представленной ниже программе выбран наиболее технологичный вид зацепов, считающийся одним из лучших.

3. Пружина растяжения может быть навита с предварительным натяжением! Если пружина сжатия при приложении осевой нагрузки сразу начинает осадку, то пружина растяжения может начать образовывать зазор между витками только после достижения растягивающей осевой силой некоторого значения F0>0! Вычислить силу F0 достаточно сложно, поэтому часто ее определяют экспериментально — замерами динамометром, а затем добавляют в виде поправки к значениям сил F1, F2 и F3 при прежних перемещениях, изменяя расчетные значения на диаграмме рабочего чертежа. Наличие предварительного натяжения позволяет сделать пружину растяжения более компактной в осевом направлении.

В программе: F0=0! Это следует помнить и учитывать.

4. Долговечность пружины — это количество циклов сжатия-растяжения, в течение которых пружина сохраняет свои силовые и геометрические параметры, по-простому — не ломается. На долговечность цилиндрической пружины и растяжения и сжатия влияют три главных фактора:

— механические свойства материала, из которого навита пружина;

— индекс пружины (отношение среднего диаметра навивки к диаметру проволоки);

— угол подъема витка (для пружины сжатия — это тангенс отношения шага навивки к длине витка, а для пружины растяжения — это тангенс отношения максимальной деформации витка к длине витка).

Если взять кусок проволоки и начать сгибать-разгибать в одном месте, то проволока переломится через некоторое количество циклов. Если сгибать-разгибать с малым радиусом и на большой угол, то разрушение произойдет быстрее, чем при сгибах с большим радиусом и на малый угол.

Аналогично обстоит дело и с долговечностью пружины. Чем меньше угол подъема витка и больше индекс пружины, тем большее количество циклов она отработает. Если требуется высокая долговечность, угол подъема витка следует принять 5…7° и только для статического режима работы можно этот угол увеличить до 10°.

Расчет пружины растяжения в MS Excel.

Предлагаемая вашему вниманию программа является адаптированным вариантом программы расчета пружины сжатия, которую вы найдете по ссылке в начале статьи.

Если заданные вами значения параметров будут ошибочными, программа подскажет, что следует сделать, выдав соответствующие рекомендации в строках со светло-зеленой заливкой.

Ниже представлены скриншот программы и формулы для цилиндрической стальной пружины растяжения из круглой проволоки с зацепами в виде отогнутых крайних витков (как показано на рисунке выше).

Внимание!!!

После выполнения расчета по программе выполняйте проверку касательных напряжений!!!

3. I=(D1/D) -1

4. C1=(78500*D)/(8*I3)

6. S3=tg (A)*π*(D1-D)-D

7. F3=C1*S3

10. Nрасч=(L2-2*D1+3*D)/(D+F2/C1)

12. C=C1/N

13. L0=N*D+2*D1-3*D

14. L3=L0+N*S3

15. F2=C*L2-C*L0

17. F1=C*L1-C*L0

18. Lразв≈π*(N+1,7)*(D1-D)/cos (A)

19. Q= (π*D2/4)*Lразв*7,85/106

Расчет пружины растяжения выполнен. Никогда не растягивайте пружину больше допустимой длины L3! При игнорировании этого правила вы испортите пружину, и останется только выкинуть ее в металлолом.

Всегда интересны ваши мнения, оставленные в комментариях.

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла с программой: raschet-pruzhiny-rastyazheniya (xls 131KB).

Статьи с близкой тематикой

Отзывы

Сила упругости

Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация — это изменение формы тела, под действием приложенных сил.

Виды деформации

Деформация — это изменение формы, или размеров тела.

Есть несколько видов деформации:

  • сдвиг;
  • кручение;
  • изгиб;
  • сжатие/растяжение;

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б — эта же линейка, деформируемая кручением.

Рис. 1. пластиковая линейка, деформированная изгибом — а) и кручением — б)

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Растяжение пружины

Рассмотрим подробнее деформацию растяжения на примере пружины.

Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.

Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение

Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.

Сравним длину нагруженной пружины с длиной свободно висящей пружины.

[ large L_{0} + Delta L = L ]

Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).

[ large boxed{ Delta L = L — L_{0} }]

( L_{0} left(text{м} right) ) — начальная длина пружины;

( L left(text{м} right) ) — конечная длина растянутой пружины;

( Delta L left(text{м} right) ) — кусочек длины, на который растянули пружину;

Величину ( Delta L ) называют удлинением пружины.

Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.

Примечание: Отношение — это дробь. Относительное — значит, дробное.

[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]

( varepsilon ) — это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.

[ large boxed{ F_{text{упр}} = k cdot Delta L }]

Эту формулу назвали законом упругости Гука.

( F_{text{упр}} left( H right) ) — сила упругости;

( Delta L left(text{м} right) ) — удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) ) — коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется — малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему — по оси.

Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

[ large F_{text{упр}} — m cdot g = 0 ]

Подставим в это уравнение выражение для силы упругости

[ large k cdot Delta L — m cdot g = 0 ]

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:

[ large boxed{ k = frac{ m cdot g }{Delta L} }]

(g) — ускорение свободного падения, оно связано с силой тяжести.

Соединяем две одинаковые пружины

В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.

Параллельное соединение пружин

На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.

Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины

Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две параллельные пружины:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]

Умножим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{параллел}} = 2k_{1} } ]

Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной

Последовательное соединение пружин

Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.

Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.

На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).

Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений

Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины

Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две последовательные пружины:

[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{послед}} cdot 2 = k_{1} ]

Разделим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]

Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной

Потенциальная энергия сжатой или растянутой пружины

Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу, например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.

Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией

Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).

Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:

[ large boxed{ E_{p} = frac{k}{2} cdot left( Delta L right)^{2} }]

( E_{p} left( text{Дж} right)) — потенциальная энергия сжатой или растянутой пружины;

( Delta L left(text{м} right) ) — удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) ) — коэффициент жесткости (упругости) пружины.

Выводы

  1. Упругие тела — такие, которые сопротивляются деформации;
  2. Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
  3. Деформация — изменение формы, или размеров тела;
  4. Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
  5. Удлинение пружины — это разность ее конечной и начальной длин;
  6. Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
  7. Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
  8. Если пружины соединяют параллельно — коэффициент жесткости системы увеличивается;
  9. А если соединить пружины последовательно — коэффициент жесткости системы уменьшится.

Литература:

  1. Sprengel, «Pragmatische Geschichte der Heilkunde».
  2. Мустафин Р. И., Буховец А. В., Протасова А. А., Шайхрамова Р. Н., Ситенков А. Ю., Семина И. И. Сравнительное исследование поликомплексных систем для гастроретентивной доставки метформина. Разработка и регистрация лекарственных средств. 2015; 1(10): 48–50.
  3. Renouard, «Histoire de la medicine» (П., 1948).
  4. https://morflot.su/kak-opredelit-rastjazhenie-pruzhiny-formula/.
  5. https://al-vo.ru/mekhanika/raschet-pruzhiny-rastyazheniya.html.
  6. https://formulki.ru/mehanika/sila-uprugosti.
  7. Puccinotti, «Storia della medicina» (Ливорно, 1954—1959).
  8. Moustafine R. I., Bukhovets A. V., Sitenkov A. Y., Kemenova V. A., Rombaut P., Van den Mooter G. Eudragit® E PO as a complementary material for designing oral drug delivery systems with controlled release properties: comparative evaluation of new interpolyelectrolyte complexes with countercharged Eudragit® L 100 copolymers. Molecular Pharmaceutics. 2013; 10(7): 2630–2641. DOI: 10.1021/mp4000635.
  9. Ковнер, «Очерки истории M.».
  10. Patil H., Tiwari R. V., Repka M. A. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. Journal of Drug Delivery Science and Technology. 2016; 31: 65–71.DOI: 10.1016/j.jddst.2015.12.002.

Ссылка на основную публикацию
Похожие публикации